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persistent photoconductivity in inhomogeneous 
semiconductors 
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Abstract. The theory of relaxation of highly non-equilibrium persistent photoconductivity 
in inhomogeneous semiconductor material has been developed. For a wide range of current 
carrier concentrations, the influence of the statistical properties of stochastic electrostatic 
potential reliefs on the kinetics of persistent conductivity has been investigated analytically 
and numerically. The predicted temporal dependence of the instantaneous relaxation time 
is consistent with the results of known experiments performed far from eqiiilibrium and may 
be used for their interpretation. 

At low temperature many semiconductor structures, especially compounds and semi- 
conductor alloys, exhibit persistent conductivity after photo-excitation has ceased [1, 21. 
This phenomenon is characterised by the extremely long lifetime of induced conductivity 
for rather high carrier concentrations. Persistent conductivity has been observed in 
experiments performed on A1,Gal-,As [3], ZnSe [4,5], GaAs [6], InP [7], Si [8] and 
others. To explain the effect, assuming homogeneity in the semiconductor several so- 
called ‘centre models’ were proposed, which attribute the prolonged kinetics to large 
lattice relaxation (DX centres) [9,10] or to the excess carrier separation in k-space 
[11, 121. Another possible restriction on the recombination rate may be given by elec- 
trostatic ‘collective barriers’ produced by inhomogeneities in the material [2,6, 131. 

An abnormal relaxation of resistivity ( p )  was frequently registered experimentally 
after photo-excitation of the semiconductor, when the instantaneous relaxation time 
(ti = p/(dp/dt)) grows linearly with time t 

ti = y - I t +  Ly (1) 

where y and a are constants during the relaxation [2,5,12, 14,151. 
Such behaviour of ti while p changes by two to three orders of magnitude and y is 

essentially other than unity, can hardly be explained in terms of centre models. 
Two approaches for interpreting the dependence (1) in the collective barriers model 

are known. In the first approach [ 141, the recombination (U,) and drift (Ud) barriers 
are supposed to be constant and proportional to each other throughout the sample 
(U,  < U,). In the second [15, 161, the much more realistic stochastic description of 
potential is considered, but only a small deviation of p from the equilibrium value is 
assumed. 

0953-8984/90/020387 + 09 $03.50 @ 1990 IOP Publishing Ltd 387 



388 0 A Sedletsky and I Sh Averbukh 

This paper develops the statistical model of relaxation of persistent photo- 
conductivity, suitable for describing in a unified way both the highly non-equilibrium 
and near-equilibrium stages of relaxation in inhomogeneous semiconductors. The influ- 
ence of statistical properties of the stochastic potential relief on the temporal kinetics of 
persistent conductivity is investigated analytically and numerically over a wide range of 
current carrier concentration. 

Let us consider a semiconductor material with a spatially inhomogeneous stochastic 
electrostatic potential relief, generated by an inhomogeneous distribution of deep 
impurity centres, centre agglomerates or structure defects. 

Here we will restrict ourselves to large-scale relief, when carrier tunnelling and a 
spatial dependence of their mobilities may be ignored. In this case the electrostatic fields 
cause only a spatial modulation of the bottom of the conduction band. 

The electrons are assumed to be produced by photo-ionisation of deep impurity 
centres and to be thermalised in the conduction band. We shall consider the relaxation 
of the electron density after photo-excitation has ceased. It is because thermalised 
electrons accumulate in the potential relief minima, that defects are occupied by elec- 
trons here at the initial relaxation stages. Later, the main contribution in recombination 
rate will be given by the domains with the increasingly high electrostatic potential, 
because only there will the recharged defects remain. The recombination rate thus 
decelerates and will be determined by the properties of the ‘tail’ of the random potential 
relief distribution. 

Denoting the concentration of defects able to capture electrons from the conduction 
band, in the forbidden gap at point r as p ( r ,  t ) ,  and the conduction band electron 
concentration as n(r,  t ) ,  we have 

dp(r,  t)/dt = -Rn(r,  t )p(r ,  t )  (2) 

where R is the recombination coefficient 
For a non-degenerate electron gas 

n(r, t )  = ~ ( t ) z - ’ ( T )  exp[-~(r)/kT] (3) 

where N(t )  is the average conduction band electron concentration, ~ ( r )  is the magnitude 
of the local random electrostatic potential, which defines the conduction band bottom 
at point r,  k is Boltzmann’s constant, T is the temperature and Z ( T )  is the partition 
function defined as 

where ( .  . .) indicates spatial averaging. 

to the average concentration of defects P(t) = ( p ( r ,  t ) ) :  
The electroneutrality condition connects the average concentration of free electrons 

N ( t )  = P(t)  - Po ( 5 )  

where Po is the equilibrium defect concentration. 
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Since, according to (2) and (3), the local recombination rate depends on the value 
of local electrostatic potential ~ ( r ) ,  it is convenient to introduce the variable 

P(E, 2) = (p(r ,  W ( E  - m)), (6) 

where P ( E ,  t )  is the average defect concentration in the domains where the potential 
belongs to the interval E ,  E + d E .  It is obvious that 

P(t) = . / p ( ~ ,  t )  de.  (7) 

Multiplying equation (2) by S ( E  - ~ ( r ) )  and averaging both parts of the identity 
obtained over the r we have 

dp(E, t)/dt = -RN(t)Z-'(T) P(E, t>* (8) 
The formal solution of equation (8), expressed by the unknown function N ( t ) ,  takes 

the form 

P(E, t )  =P(E,  0) exp -[R e-'lkT/Z(T)] i ' N ( t ' )  d t ' j .  
0 

(9) 

In the case of uniformly spatially distributed defects, which generate electrons, the 
valueofp(e, 0) isdetermined bythestatisticaldistributionF(E) ofthestochasticpotential 
relief 

P(E, 0 )  = P(O)F(E) (10) 

F(E) = (a(& - E @ ) ) ) .  

where 

In this paper we consider the case where the photo-excited electron concentration may 
considerably exceed the equilibrium defect concentration, but is insufficient to change 
the electrostatic potential relief significantly. As the conductivity is determined by the 
electron concentration at the percolation level [ 171, in this case it is proportional to N( t ) .  

Substituting expression ( 5 )  into (7), taking into account (9) and (lo), we get the self- 
consistent non-linear equation for the photo-excited electron average concentration 
N(t)  

N(t)  = i dE (N(0)  + P , ) F ( E )  exp io' N ( t ' )  dt ')  - Po. (11) 

Introducing the dimensionless variables 

I =  R Z - l ( T )  io' N(t ' )d t '  

Q = Po[Po + N(0)I- l  

z = RZ-'(T)(N(O) + P o ) t  

we obtain from (11) the equation 

-= d I  ~ d ~ F ( ~ ) e x p [ - Z e x p ( - ~ / k T ) ]  - Q 
d z  

with the initial condition Z(0) = 0. 



390 0 A Sedletsky and I Sh Averbukh 

It should be noted that an n-type semiconductor with equilibrium free electron 
concentration No can be described by (15), provided that Po has been replaced by -No 
in ( 5 ) ,  ( l l ) ,  (13) and (14), and hence Q has become negative. 

The value for y in equation (l), being the subject of experimental investigation, can 
be directly expressed in terms of the variable I ,  introduced above, by 

ti = [N(t) - No]/ld(N(t) - No)/dtl = (N(t) - N,)/dt/dN/dtl-' (16) 

y - l  =dt i /d t=d[ (Z-  No)lZl-']/dt (17) 
where No equals zero for i- and p-type material No can be neglected for highly non- 
equilibrium relaxation stages. Naturally, the introduction of y by means of (17) can be 
fruitful only if y changes more slowly with time than does N .  We show below that this 
condition is typical for the model under consideration. 

We now show how equation (15) determines the recombination kinetics in the 
absence of potential relief fluctuations (F(E) = a(&)). Equation (15) is then reduced to 

dZ/d z = exp( - I )  - Q (18) 

(19) 

with the solution 

= -(l/Q) W[l - Q e x ~ ( l ) l / ( l  - e>>. 
The highly non-equilibrium initial condition N(0)  %= Po implies Q G 1. Hence at the 
initial relaxation stage, when Q exp(Z) G 1, equation (18) yields 

I =  ln(1 + z)  

N - i =  (1 + t ) - 1  

as it should be in the bimolecular recombination regime. If z + x, then I+ I ,  = -In Q 
and 

I - I ,  = -(1 - Q) exp(-Qt) (22) 

N - Z =  (1 - Q)Qexp(-Qt).  (23) 
These relations correspond to the linear recombination law at the far relaxation stage 
when the free-electron concentration is essentially less than the defect concentration. 
The smaller Q is, the later the transition from the bimolecular to the linear regime 
occurs. The relaxation conductivity instantaneous time takes the form 

t, = t + to to  = constant (24) 

z, = R-IPol .  (25) 

for the bimolecular recombination regime; for the linear regime it is given by 

Note that bimolecular recombination formally corresponds to equation (1) with y = 1 
and linear recombination to equation (1) with y + to; 

The long-term relaxation stage is determined by the asymptotic behaviour of F(E) in 
the energy region E % E ~ ,  where c0 is the characteristic amplitude of ~ ( r )  fluctuations. In 
most cases the asymptotics of F I E )  is described by 

F(E) = B exP[-(E/&o>Al. (26) 

For a Gaussian random potential A = 2, whilst for doped semiconductors A = 4 [16-181. 
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In reference [15], the relaxation for weak deviations from equilibrium and A = 1 was 
considered. In the following we shall restrict ourselves to distribution functions of the 
type given by equation (26)  with the normalising factor 

p-' = 1 e x p [ - ( ~ / ~ ~ ) ~ ]  dE. 

It follows from equation (15) that the I grows monotonically with z. Further, we 
consider the most interesting case of the highly non-equilibrium relaxation stage, when 
the term (2 in equation (15) may be omitted. The processes of near-equilibrium relax- 
ation in inhomogeneous material are analysed in the Appendix. 

Introducing the variable K = E/kT, taking into account equation (26) and considering 
the highly nonequilibrium relaxation stages, we obtain 

dZ/dz = P ( c O ,  A)kT9 (27) 
where 

9 = lom eXp{-[(K/Ko)* -I- le-"]} d~ 

K~ = E,/kT. 

For large I ,  the main contribution to the integral originates from the vicinity of the 
extremum point K ,  of the function 

A(K) = ( K / K ~ ) A  + Iexp(-K) (28) 

A'(K) = A K ~ * K * - '  - Zexp(-K) = 0. (29) 

K ,  - In I .  (30) 

i.e. K ,  is the root of the equation 

For I+ 33 

Taking into account for A # 1 only the leading term of the expansion of A(K) in 
( K  - K , ) / K , ,  we obtain 

4 - exp[-A(~,)]  exp[-b(e-' - 1 + z)] d z  (31) 
- K m  

where z = K - K ,  and 6 = A K ~ ' K ~ - ' .  
The main contribution to the integral in equation (31) is made by values of z less 

than 6-' = A - ' K ~ K & - ' .  Hence the A(K) expansion in Z / K ,  is justified for K ,  % 1. The 
integral in (31) equals 

(e/6Ia ~ ( 6  ~ X P  K m  > 6 )  

9 - (e/6>"(6> exp[-A(~m)I (32) 

where y(x,  y )  is the incomplete gamma function. Hence, asymptotically 

where T ( x )  is the gamma function. For sufficiently large I ,  equation (32)  can be reduced 
to 
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In the last case 

I - (z + ~ O ) K O / ( l + K o )  zo = constant (36) 

N =  i-  K o ( 1  + K o ) - l ( Z  f Zo)- l / ( l+Ko '  (37) 

y-' = 1 + K g  1 + €o/kT (38) 

i.e. yis aconstant less than 1,  the value of y approaches unity with increasing temperature 
or with decreasing amplitude of the characteristic fluctuation of the potential relief. 

The retention of only the leading term in (32) is sufficient for an asymptotic estimate 
of y by means of equation (17) 

y-1 - 1 + ~ A h - 1  (In Z)l-A.  (39) 

If A = 1, then (39) implies y-' = 1 + K~ in agreement with (38). 
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Figure 1 (continued). Temporal dependences of N and y .  (c) 1 = 1.5, (d )  d = 2. 

Equation (39) predicts qualitatively different asymptotic behaviour for y as t+ 
for different values of A: 

Y - t l  /2>1 

Y-0  A < 1. 

We have investigated in detail the relaxation behaviour of photo-excited current 
carriers for a wide range of electron concentrations by means of numerical computation 
of equation (27) for different parameters of the potential statistical distribution. 

As shown in figures l(a)-(d), extended temporal intervals always exist, during which 
the current carrier concentration changes by several orders of magnitude, but y exhibits 
only weak variation, corresponding to the experimentally observed dependence (1). 
The long-term relaxation stage is well described by the analytical results obtained above. 

Thus the model considered here provides a unified description of the temporal 
dynamics of the relaxation of conductivity in inhomogeneous semiconductor materials 
from the highly non-equilibrium stage to near-equilibrium. The solutions obtained are 
valid throughout a wide conductivity range and near the equilibrium are in agreement 
with the known results of references [15,16]. 
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The essential dependence of the instantaneous time tl of the conductivity relaxation 
on the statistical properties of the stochastic potential relief has been established. The 
discontinuous threshold character of limiting value of y as a function of A has been shown 
for the class of distribution function with asymptotes described by 

F(E) - exp[-(e/s,)”]. 
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Appendix 

We have two cases near the equilibrium relaxation stage. 

hand side of equation (15). Now equation (15) may be rewritten as 
(i) Q > 0. Let us introduce the variable x = Z - Z, where I ,  is the root of the right- 

dx 
- = 1 d e  F(E) exp[-I, exp(-e/kT)] X {exp[-x exp(-e/kT)] - 1). d z  
If x 1 then (Al) is reduced to 

dx/dz = -Z;:X 

with 

z&! = exp{-[e/kT + I ,  exp(-~/kT)]}F(~)  dE. i 
Hence 

x = A exp( - t / teq) 

AN = N = d x / d t  

A = constant 

= zeq  

y-1 = 0. 
(ii) Q < 0 (n-type material). It is natural to introduce the variable x = I - Qz. It 

follows from (15) that 

dx  
-= d z  /deF(e)exp[QZ exp(-e/kT)]. 

Using the above estimation we obtain 
AN = dx/dz - pkT(e/G)6 r(6) exp[ - A ( K ~ ) ]  (A41 

where 
A(K,) - exp(-rcGA In” z). 

Hence 
t i  - K { z / A  InA-’ z 

y-’  = K ~ / A  In*-’ z. 
(A51 
(Ab) 

Equations (A5) and (A6) are in agreement with the results of references [15,16]. 
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